Test Report: DX Engineering DXE-RPA-1 Wideband Preamplifier

By Adam Farson VA70J/AB40J, 3 October 2013

Noise Power Ratio (NPR). The DUT was powered from +13.8V DC and connected between the RS-50 White Noise Generator and the RE-50 Noise Receiver via 75Ω coax. These instruments form the Wandel & Goltermann RK-50 Noise Test Set. In the RS-50, the 60-4100 kHz BPF and 3886 kHz bandstop filter were selected; in the RE-50, the 3886 kHz down-converter was selected. NPR was measured over the noise loading range -50 to -5 dBm. Results per Table 1.

BPF kHz Bandstop kHz PTOT (Noise Loading) dBm NPR dB NPR (dB) at $V_{CC} = +15V$ -50 52 -40 62 -30 71 60-4100 77 3886 -20 -10 76 -5 65 68 0 29 31.5

Table 1: Noise Power Ratio (NPR).

2. Gain: The DUT was connected between a signal source and an RF power meter as follows: Marconi 2019 signal generator ► MCL FT1.5-1B 50/75Ω transformer ► DUT ► MCL FT1.5-1C 75/50Ω transformer ► Millivac MV-723B RF millivoltmeter w/50Ω terminated probe. V_{CC} was +13.8V. Input power was increased until ≈ 3 dB compression was observed. (See Table 2.)

Table 2: Gain.

f MHz	P _{IN} dBm	Po dBm	Gain dB	
1.8	-30.7	-14.5	16.2	
	-20.7	-4.5	16.2	
	-10.7	+4	16.7	
	-0.7	+15	15.7	
	+9.3	+24.5	15.2	
	+12.3	25	12.7	

Note: At VCC = +13.8V, P_0 & gain decreased by 0.5 dB.

3. Third Order Intercept (IP₃): The Marconi 2018A (f_1) and 2019 (f_2) signal generators were connected, each via a 10 dB pad, to an MCL ZSC-2-2 combiner followed by a 0 – 110 dB step attenuator and a MCL FT1.5-1B 50/75 Ω transformer. The 75 Ω output was connected to the DUT, which drove an HP 8563E spectrum analyser via an MCL FT1.5-1C 75/50 Ω transformer and a 15 dB pad. The HP 8563E had the HP 85672A Spurious Response Utility installed.

Input power was -1 dBm/tone, and output was +15 dBm/tone. 2-tone IP3 was measured at 1.8 MHz, and at 2, 50 and 150 kHz test-signal spacing. The test results are given in the following charts.

INTERMODULATION		MEASU	RESULTS			
LOWER UPPER		NAL: NAL:	1.81 0 1.812	MHz MHz	3 5	dВм dВм
SIGNAL	9	PACING:	2.000	kHz		
IMD IMD	(LOWER (UPPER				dBc dBc	
T0I/IP3		(LOWER (UPPER	PRODUCT:	-	32.8 32.8	dBm dBm

DXE-RPA-1 Preamp (VE7KW). Actual output +15 dBm/tone. 50 kHz spacing. 03.10.2013.

INTERMODULATION		ı	MEASU	RESU	RESULTS	
LOWER UPPER		NAL: NAL:	1.81 0 1.86 0	MHz MHz	ø −.2	dВм dВм
SIGNAL	S	PACING:	50.00	kHz		
IMD IMD	(LOWER (UPPER		DUCT):	-66.3 -68.2	dBc dBc	
T0I/IP3		(LOWER (UPPER	PRODUCT PRODUCT	-	33.1 34.0	dВн dВн

INTERMODULATION		MEASUR	RESULTS			
LOWER	SIG	NAL:	3.710	MHz	9	dВм
UPPER	SIG	NAL:	3.860	MHz	2	₫Вм
SIGNAL	S	PACING:	150.0	kHz		
IMD	(LOWER	PRO	DDUCT):	-66.3	dBc	
IMD	(UPPER	PRO	DDUCT):	-66.0	dBc	
TOI/IP3		(LOWER	PRODUCT):		33.1	dВм
TOI/IP3		(UPPER	PRODUCT):		32.9	dВм

DXE-RPA-1 Preamp (VE7KW). Actual output +15 dBm/tone. 2 kHz spacing. 03.10.2013.

DXE-RPA-1 Preamp (VE7KW). Actual output +15 dBm/tone. 150 kHz spacing. 03.10.2013.

4. Noise Figure(NF): NF was measured by the "modified Y-Factor" method, using the following test setup: NoiseCom NC6110 noise generator ▶ 0-110 dB step attenuator ▶ MCL BLP-30 30 MHz LPF MCL FT1.5-1B 50/75Ω transformer ▶ DUT ▶ MCL FT1.5-1C 75/50Ω transformer ▶ MCL GALI-74* wideband amplifier ▶ 2 dB pad ▶ HP 8563E spectrum analyser. V_{CC} was +13.8V.

Spectrum analyser settings: Centre freq. 14.100 MHz; span 1 kHz; reference level -10 dBm; RBW = 3 Hz; VBW = 1 Hz; DET = Sample; MKRNOISE On; Video averaged; read at 50 averagings.

*GALI-74 has 2.9 dB NF, 21 dB gain.

- 1. Read marker level with noise OFF and DUT input terminated (-131.5 dBm). This corresponds to the noise output of a 75 Ω resistor at room temperature ("cold").
- 2. Turn noise ON, and adjust attenuator for \approx 10 dB increase in marker amplitude. Read marker amplitude again ("hot") and record attenuator setting. Subtract "cold" from "hot" marker amplitude to obtain ΔN .
- 3. Calculate NF:

NF = Noise density of generator – attenuator setting + 174 – ΔN For our test, noise density of generator = -82 dBm/Hz; attenuator setting was 77 dBm; ΔN = 9.8 dB.

Thus NF = -82 - 77 - 1** + 174 - 9.8 =**4.2 dB.** (DXE spec is 3.5 dB). There will be a slight error due to the residual NF of the spectrum analyser behind the GALI-74 amplifier. ** Insertion loss of matching transformers.

Copyright© 2013 A. Farson VA7OJ/AB4OJ. All rights reserved.